
 
 
 
 
 

Deploying and Running  

Oracle GoldenGate 19c Microservices on 

Docker 
 
 

By: Bobby L. Curtis, MBA 
 
RheoData 
  



Introduction 
 

Enterprises today are quickly transitioning to flexible service-based architectures that can be 

rapidly and dynamically deployed. Many of these architectures rely on software that 

performs virtualization of their underlying hardware stack.  Docker is the premier service 

product that uses OS-level virtualization to build and deliver software in containers.  Docker 

containers make deploying software packages easy and simple. 

 

There are many ways to procure a pre-built docker container that can rapidly be deployed; 

however, there are times when greater flexibility and customization is needed or desired.  

This paper will explore items that need to be considered when deploying Oracle GoldenGate 

19c Microservices within a container. 

 

Software 
 

Docker 
Docker is a container platform that allows an organization to package code and/or 

applications with all dependences into a lightweight, standalone, executable package of 

software called images.  Images can then be executed against the Docker Engine running on 

either Linux or Windows.  Enabling a consistent and repeatable execution of software 

between development, testing, and production environments.   
 

Docker containers that run against Docker Engine are: 

 

• Standard: Docker is the industry standard for containers.  Ensuring that they are 

portable between environments. 

 

• Lightweight: Containers use the OS kernel and do not require an OS per application.  

Making servers more efficient and reducing overall licensing costs. 

 

• Secure: Docker provides a safer environment to run applications due to 

containerization and provides the strongest isolation capabilities in the industry 

 

Containers powered by Docker are running everywhere and on every major platform.  This 

makes a great platform to build and run Oracle GoldenGate 19c Microservices and leverage 

advanced options like remote capture and remote apply within a hub-n-spoke architecture.   
 



Oracle GoldenGate 19c Microservices 
Oracle GoldenGate 19c is an enterprise real-time data integration and replication software.  

It enables real-time data integration and replication, high-availability solutions, transactional 

change data capture (CDC) between operational and analytical enterprise systems.  

 

Using Oracle GoldenGate 19c, you can move transactional data across multiple systems in 

the enterprise in real-time; providing data where it is needed when it is needed. The 

heterogenous capabilities of Oracle GoldenGate 19c allow you to capture and distribute data 

between many different data sources, filter transactions within the enterprise, and migrate 

databases in near zero-downtime. 

 

The Microservices architecture within Oracle GoldenGate 19c builds on top of the existing 

Oracle GoldenGate framework and makes implementation and usage easier.  By enabling 

microservices on the various Oracle GoldenGate components and providing REST API end-

points, administration becomes easier. The enhanced integration within Oracle GoldenGate 

19c Microservices open up administration and execution without having to have server 

access. 
 

Nginx 
Nginx is a free open-source or purchased HTTP/Reverse Proxy utility that is recommend by 

Oracle to use in front of the Oracle GoldenGate 19c Microservices architecture.  The purpose 

of the reverse proxy is to consolidate the port numbers that are established with Oracle 

GoldenGate 19c Microservices for all deployments on the host.   
 

Deployment Model 
 

Oracle GoldenGate 19c Microservices can be deployed in many use-cases or architecture 

models.  The primary goal of Oracle GoldenGate 19c Microservices is to enable users to build 

solid data integration environments on a large scale, quickly establish active/active 

environments, or scale out mesh architectures.  

 

One of the popular deployment models is the hub-n-spoke model.  This model centralizes 

the management of Oracle GoldenGate 19c and enables the usage of remote capture and 

remote apply.  There is no need to ship trail files from source to target because everything 

resides on the central hub of the architecture.   
 



 
Figure 1: Hub Architecture with Docker 

 

Connections/Client Software 
Connections to the source and target databases are done over standard Oracle TNS Names 

connections or EZConnect connections.  For this to be enabled, the hub has to have all the 

Oracle Client software needed per database platform connecting to.  Depending on the 

Oracle Client packages used, this can bloat the Docker container.  It is best to use a minimal 

version of the Oracle Client software. 

 

Networks 
The standard Docker network works out of the box; however, if there is a need to string a 

few Docker containers together the data will not route correctly without IP addresses.  To 

get around this issue Docker provides a way to build additional networks.  Build a defined 

network for all containers to use.  This will allow communication between all Docker 

containers on this defined network. 

 

Volumes 
There are multiple ways of sharing data between the host and the Docker Engine, Bind 

Mounts and Volumes.  Volumes are an internal and preferred mechanism for persisting data 

between Docker containers.  Additionally, Volumes provide advantages over bind mounts in 

a few ways: 

 

• Easier to backup 

• Management via Docker CLI 

• Run on Linux or Windows systems 

• Share between multiple containers 

• Drivers that let you store volumes on remote hosts or cloud platforms 

 



With Oracle GoldenGate 19c Microservices, Docker volumes are a great choice because the 

deployment home can be placed within a volume and persisted over container rebuilds and 

upgrades. 

 

 
Figure 2: Deployment Homes in Docker Volumes 

 

Building 
 

Docker Image 
The basis for the Docker container is an image that must be built with a Dockerfile and a few 

corresponding scripts.  The software that is needed to build this container is: 
 

• Oracle GoldenGate 19c Microservices 

• Oracle Database 19c Client – base lite 

• Oracle Database 18c Client – base lite 

 

The images are also built on top of the Oracle provided Docker images (oraclelinux:7-slim).  

With all these items in place, you can write a Dockerfile that will build the Docker image 

and pre-stage all components needed. 
 

Network 
Docker provides a bridge network by default.  This default network has limitations when 

looking at inter-communication between containers.  To work around this, simply create a 

new network that the containers will connect to and use for network activity. 

 

  



Command to create a network is: 

 
docker network create \ 

--driver=bridge \ 

--subnet=172.20.0.0/16 \ 

--ip-range=172.20.10.0/16 \ 

<network_name> 

 

Volumes 
Docker provides a quick command that allows for the creation of volumes within the host 

filesystem.  A best practice and a good habit to get into is to name the volume similar to what 

will be in the volume and matching a directory within the container.  This allows you to 

identify the contents of the volume within the container and the local host filesystem. 

 

For Oracle GoldenGate 19c Microservices, the deployment home is located outside of the 

Oracle Goldengate home.  This makes the usage of volumes simple to use and a great option 

in flexibility between container builds. 

 

Command to create a volume is: 

 
Docker create volume <volume_name> 

 

Start Oracle GoldenGate 19c Microservices Container 
With the Oracle GoldenGate 19c Microservices image ready, network established, and a 

volume ready; the Docker container can be started.   

 

To run the container: 

 
docker run -dit  

--memory=1024M \ 

--privileged \ 

-v gg_deployments:/opt/app/oracle/gg_deployments:rw \ 

--hostname=gg19c \ 

-p 59011:5901/tcp \ 

-p 1522:1521/tcp \ 

-p 443:443/tcp \ 

-p 2220:22/tcp  \ 

--network ggtest \ 

--name ogg \ 

rheodata:ogg19.1.0.0.4 

 

 

 

 



Configure Oracle GoldenGate 19c Microservices 
With the container running, there are multiple ways of configuring Oracle GoldenGate 19c 

Microservices.  Ideally, with the automation that Docker builds provide, the ServiceManager 

and first deployment would be established.  In reality and for customization purposes, it is 

easier to access the container and build the deployments that are needed. 
 

Preferred Method 

With Docker containers, if it is built with xterm rpm and a vnc server, the container can be 

accessed via a X11 terminal.  From the X11 terminal, the Oracle GoldenGate Configuration 

Assistant (OGGCA) can be ran and deployments configured.   
 

Silent Method 

If the container is built without the xterm rpm and a vnc server, the container can be 

configured by using the silent install method of the Oracle GoldenGate Configuration 

Assistant.  The downside of this approach is that the OGGCA does not come with a response 

file that is needed to run a silent install. 

Interact 
 

Docker is a great way of taking an application like Oracle GoldenGate 19c Microservices and 

make it easy to install.  Once it is installed and deployments are configured, there a multiple 

way of interacting with Oracle GoldenGate. 
 

Web Browser 
The web browser is the easiest way of interacting with Oracle GoldenGate 19c 

Microservices.  By accessing Oracle GoldenGate via HTTP or HTTPS, the application can be 

logged into and configured with minimal effort. 
 

 
Figure 3: Oracle GoldenGate Browser Access on Docker 



 

Command Line 
Oracle GoldenGate 19c Microservices has a brand new command line tool called 

Administration Client (AdminClient).  In order to access AdminClient from outside the 

Docker container, simply use the Docker exec command. 
 

Open AdminClient via Docker: 
 
Docker exec -ti \ 

<container_name> \ 

$OGG_HOME/bin/adminclient 

 
Note: To access $OGG_HOME/bin from outside the container, you will need to use the absolute path. 

 

 
Figure 4: Oracle GoldenGate AdminClient from within Docker 

Summary 
Setting up and running Oracle GoldenGate 19c Microservices in Docker containers is a great 

way to jump-start many data integration initiatives. By leveraging Docker to build a flexible 

and scalable deployment model, Oracle GoldenGate 19c Microservices can be provisioned 

quickly and provide production ready environments within minutes that are easy to use.  

This paper covered a number of aspects of moving Oracle GoldenGate 19c Microservices into 

container-based architecture that centralize management without effecting data streams.  Do 

not consider this paper to be the final word on how to configure Oracle GoldenGate 19c 

Microservices within Docker; things are always changing but this is a great starting place.  

 

For more information contact RheoData at solutions@rheodata.com. 


	Introduction
	Software
	Docker
	Oracle GoldenGate 19c Microservices
	Nginx

	Deployment Model
	Connections/Client Software
	Networks
	Volumes

	Building
	Docker Image
	Network
	Volumes
	Start Oracle GoldenGate 19c Microservices Container
	Configure Oracle GoldenGate 19c Microservices
	Preferred Method
	Silent Method


	Interact
	Web Browser
	Command Line

	Summary

